Affiliation:
1. School of Technology, Beijing Forestry University, Beijing 100083, China
2. Chongqing Mobile Communications Limited Company, Chongqing 404100, China
Abstract
We proposed a novel saliency detection method based on histogram contrast algorithm and images captured with WMSN (wireless multimedia sensor network) for practical wild animal monitoring purpose. Current studies on wild animal monitoring mainly focus on analyzing images with high resolution, complex background, and nonuniform illumination features. Most current visual saliency detection methods are not capable of completing the processing work. In this algorithm, we firstly smoothed the image texture and reduced the noise with the help of structure extraction method based on image total variation. After that, the saliency target edge information was obtained by Canny operator edge detection method, which will be further improved by position saliency map according to the Hanning window. In order to verify the efficiency of the proposed algorithm, field-captured wild animal images were tested by using our algorithm in terms of visual effect and detection efficiency. Compared with histogram contrast algorithm, the result shows that the rate of average precision, recall and F-measure improved by 18.38%, 19.53%, 19.06%, respectively, when processing the captured animal images.
Funder
Import Project under China State Forestry Administration
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献