Aluminium Nanofluids Stability: A Comparison between the Conventional Two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method

Author:

Ali Naser12ORCID,Teixeira Joao A.1,Addali Abdulmajid1

Affiliation:

1. Cranfield University, School of Aerospace, Transport and Manufacturing (SATM), Cranfield, England MK430AL, UK

2. Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait

Abstract

This study investigates the shelving stability of dispersed aluminium nanoparticles in water mixtures fabricated by the conventional and the controlled bath temperature two-step methods. The nanofluids were prepared with water of pH 9 and nanoparticles of 0.1–1.0 vol.%. A bath type ultrasonicator was employed for dispersing the nanoparticles into the base fluid. The sonication process, for all as-prepared samples, lasted for 4 hours and was either device bath temperature uncontrolled or controlled in the range of 10–60°C. Furthermore, the stability of the as-produced nanosuspensions was evaluated using the sedimentation photograph capturing method by capturing images at equal intervals of time for 12 hours then analysing the data based on the sample sedimentation height ratios. It was found that the sedimentation behaviour of the nanofluids fabricated via the controlled temperatures of less than 30°C was of dispersed sedimentation type, while those produced by the conventional method and the fixed temperatures of 30°C and higher were of flocculated sedimentation type. In addition, increasing the controlled sonication temperature has shown to increase the settling process of the sediments. Moreover, the rise in nanoparticle concentration was seen to reduce the variation in sedimentation height ratio between the fixed temperature samples. A comparison between the two fabrication methods has shown that the 30°C nanofluids had better short- and long-term stability than the conventionally produced suspensions.

Funder

Cranfield University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3