Nrg1 Intracellular Signaling Is Neuroprotective upon Stroke

Author:

Navarro-González Carmen1ORCID,Huerga-Gómez Alba2,Fazzari Pietro12ORCID

Affiliation:

1. Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain

2. Consejo Superior de Investigaciones Científicas (CSIC) Centro de Biología Molecular Severo Ochoa, Madrid, Spain

Abstract

The schizophrenia risk gene NRG1 controls the formation of excitatory and inhibitory synapses in cortical circuits. While the expression of different NRG1 isoforms occurs during development, adult neurons primarily express the CRD-NRG1 isoform characterized by a highly conserved intracellular domain (NRG1-ICD). We and others have demonstrated that Nrg1 intracellular signaling promotes dendrite elongation and excitatory connections during neuronal development. However, the role of Nrg1 intracellular signaling in adult neurons and pathological conditions remains largely unaddressed. Here, we investigated the role of Nrg1 intracellular signaling in neuroprotection and stroke. Our bioinformatic analysis revealed the evolutionary conservation of the NRG1-ICD and a decrease in NRG1 expression with age in the human frontal cortex. Hence, we first evaluated whether Nrg1 signaling may affect pathological hallmarks in an in vitro model of neuronal senescence; however, our data failed to reveal a role for Nrg1 in the activation of the stress-related pathway p38 MAPK and DNA damage. Previous studies demonstrated that the soluble EGF domain of Nrg1 alleviated brain ischemia, a pathological process involving the generation of free radicals, reactive oxygen species (ROS), and excitotoxicity. Hence, we tested the hypothesis that Nrg1 intracellular signaling could be neuroprotective in stroke. We discovered that Nrg1 expression significantly increased neuronal survival upon oxygen-glucose deprivation (OGD), an established in vitro model for stroke. Notably, the specific activation of Nrg1 intracellular signaling by expression of the Nrg1-ICD protected neurons from OGD. Additionally, time-lapse experiments confirmed that Nrg1 intracellular signaling increased the survival of neurons exposed to OGD. Finally, we investigated the relevance of Nrg1 intracellular signaling in stroke in vivo. Using viral vectors, we expressed the Nrg1-ICD in cortical neurons and subsequently challenged them by a focal hemorrhagic stroke; our data indicated that Nrg1 intracellular signaling improved neuronal survival in the infarcted area. Altogether, these data highlight Nrg1 intracellular signaling as neuroprotective upon ischemic lesion both in vitro and in vivo. Given the complexity of the neurotoxic effects of stroke and the involvement of various mechanisms, such as the generation of ROS, excitotoxicity, and inflammation, further studies are required to determine the molecular bases of the neuroprotective effect of Nrg1 intracellular signaling. In conclusion, our research highlights the stimulation of Nrg1 intracellular signaling as a promising target for cortical stroke treatment.

Funder

Generalitat Valenciana

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3