Lightweight APIT with Bat Optimization with Simulated Annealing Localization for Resource-Constrained Sensor Networks

Author:

Latha T. Swarna12ORCID,Rekha K. Bhanu12ORCID,Ferede Alachewn Wubie3ORCID

Affiliation:

1. Electronics and Communications Engineering, School of Electronics Engineering, Presidency University, Bengaluru, India

2. Electronics and Communications Engineering, SV College of Engineering, Tirupati, India

3. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

In a wireless sensor network, information processing, and information acquisition, localization technology is the key to making it practically possible application. Approximate Point-in-Triangulation (APIT) is the most widely used localization estimation which has high accuracy in localizing the nodes and ease of deployment of nodes in the real-time environment. Though it has numerous key advantages, some of the drawbacks which make it a little setback in preference are the unevenness in the distribution of nodes. Tracking is more appropriate for mobile sensor nodes than tracking is for static sensor nodes. The two main types of localization algorithms are range-based and range-free techniques. In an indoor setting, the projected range (distance) between an anchor and an unknown node is very inaccurate. By utilizing a large number of already existing access points (APs) in the range-free localization approach, this issue can be overcome to a great extent. The utilization of multisensor data, such as magnetic, inertial, compass, gyroscope, ultrasonic, infrared, visual, and/or odometer, is stressed in recent research to further increase localization accuracy. The tracking system also makes location predictions for the future based on historical location data. To overcome this issue, the proposed localization algorithm of APIT with Bat-SA proves its efficiency. Due to its low localization error, the traditional Bat method is more accurate than APIT. The proposed Bat using the SA algorithm is found to perform better than the traditional APIT algorithm in terms of convergence of computing rate and success rate. In order to mimic the suggested APIT method, it is paired with the Bat-SA localization technique. Simulation evaluation proves the performance efficiency of the proposed algorithm. The performance metrics parameters are latency, node distribution map, positioning error map, and neighbor relationship diagram which are used to evaluate the proposed method.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3