Torsional Behavior of High-Strength Concrete Beams with Minimum Reinforcement Ratio

Author:

Joh Changbin1ORCID,Kwahk Imjong2ORCID,Lee Jungwoo2ORCID,Yang In-Hwan3ORCID,Kim Byung-Suk4

Affiliation:

1. Research Fellow, Korea Institute of Civil Engineering and Building Technology, Department of Infrastructure Safety Research, Goyang, Gyeonggi 10223, Republic of Korea

2. Senior Researcher, Korea Institute of Civil Engineering and Building Technology, Department of Infrastructure Safety Research, Goyang, Gyeonggi 10223, Republic of Korea

3. Professor, Kunsan National University, Department of Civil Engineering, Kunsan, Jeonbuk 54150, Republic of Korea

4. Senior Research Fellow, Korea Institute of Civil Engineering and Building Technology, Department of Infrastructure Safety Research, Goyang, Gyeonggi 10223, Republic of Korea

Abstract

Although there is a growing trend to use higher strength for concrete and steel in reinforced concrete structures due to the lightness and slenderness of these members together with the simplified arrangement of their reinforcement, there is still the necessity to inspect the reduction of ductility resulting from the gain in strength. Taking into account that this also concerns the design for torsion, this study intends to investigate the regulations related to the torsional minimum reinforcement ratio in view of the minimum ductility requirement with focus on Eurocode 2. To that goal, the relation between the torsional cracking moment and the ductile behavior is discussed for the beam reinforced with the minimum torsional reinforcement ratio to examine the eventual properness of the minimum torsional reinforcement ratio recommended by Eurocode 2. Moreover, a pure torsion test is performed on 18 beams made of 80 MPa concrete reinforced by high-strength bars with rectangular section and various test variables involving the minimum torsional reinforcement ratio, the transverse-to-longitudinal reinforcement ratio, and the total reinforcement ratio. As a result, for the high-strength concrete beams, the minimum torsional reinforcement ratio recommended by Eurocode 2 was insufficient to prevent the sudden loss of strength after the initiation of the torsional cracking. But with regard to the compatibility torsion of statically indeterminate structure, the adoption of the minimum torsional reinforcement ratio recommended by Eurocode 2 might secure enough deformability under displacement-controlled mode to allow the redistribution of the torsional moment.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3