Markov Models for Image Labeling

Author:

Chen S. Y.1,Tong Hanyang1,Cattani Carlo2

Affiliation:

1. College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China

2. Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Sa), Italy

Abstract

Markov random field (MRF) is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, that is, belief propagation and graph cut, are discussed. We further focus on the solutions of two classical vision problems, that is, stereo and binary image segmentation using MRF model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Modified Fuzzy Markov Random Field Incorporating Multiple Features for Liver Tumor Segmentation;Lecture Notes in Computer Science;2024

2. Towards developing a segmentation method for cerebral aneurysm using a statistical multiresolution approach;Egyptian Journal of Neurosurgery;2023-08-07

3. Development of a cerebral aneurysm segmentation method to prevent sentinel hemorrhage;Network Modeling Analysis in Health Informatics and Bioinformatics;2023-03-16

4. A Methods of Medical Image Security Using Visual-Cryptography Techniques;2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA;2022-08-26

5. An Effective Algorithm for Video-Based Parking and Drop Event Detection;Complexity;2019-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3