A New Photocatalytic System Using Steel Mesh and Cold Cathode Fluorescent Light for the Decolorization of Azo Dye Orange G

Author:

Chang Ming-Chin1,Huang Chin-Pao2,Shu Hung-Yee1,Chang Yung-Chen1

Affiliation:

1. Institute of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Shalu, Taichung 433, Taiwan

2. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA

Abstract

High color and organic composition, the effluents from the textile dyeing and finishing industry, can be treated by photocatalytic oxidation with UV/TiO2. The objective of this study was to prepare a new photocatalytic system by coating nanosized TiO2particles on steel mesh support and using cold cathode fluorescent light (CCFL) irradiation at 365 nm in a closed reactor for the oxidation of azo dye C.I. Orange G (OG). Various factors such as reaction time, coating temperature, TiO2dosage, pH, initial dye concentration, and service duration were studied. Results showed efficient color removal of the OG azo dye by the photocatalytic system with TiO2-coated temperature at 150°C. The optimal TiO2dosage for color removal was 60 g m−2. An acidic pH of 2.0 was sufficient for photocatalytic oxidation whereas basic condition was not. The rate of color removal decreased with increase in the initial dye concentration. The TiO2-coated steel mesh can be used repeatedly over 10 times without losing the photocatalytic efficiency. Results of FTIR and IC indicated the breakage of N=N bonds, with sulfate as the major and nitrite and nitrate as the minor products, which implied degradation of dye molecules.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3