Affiliation:
1. Laboratory of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
Abstract
Nonlinear optical (NLO) properties of organic and metal-organic materials are of considerable interest to emerging optoelectronic and photonic technologies. Much work has been carried out on the former materials but the latter ones have received less attention till date. Herein, a density functional theory (DFT) study on the combined effects of transition metal chelation and solvent polarity on the first hyperpolarizability (βtot) of 4-methoxyacetophenone thiosemicarbazone (MAPTSC) is reported. MAPTSC exhibits a tautomeric form with higher optical nonlinearity rendering its NLO response in polar solvents potentially switchable. Our results have revealed significant modifications of the first hyperpolarizability of MAPTSC upon complexation with different transition metal chlorides in the presence of solvents with varying dielectric constants. Therefore, its second-order NLO response is highly tunable by the synergy of transition metal chelation and solvent polarity. MAPTSC and its Zn(II) and Pt(II) chloride complexes are promising NLO materials because their gas-phase βtot values are larger than those of the prototype push-pull molecules, para-nitroaniline (PNA) and urea, by factors of about 1.40–1.76 and 19.57–37.24, respectively; these factors greatly increase in polar solvent medium. Moreover, they possess high optical transparencies in the visible region of the electromagnetic spectrum which mitigate transparency/nonlinearity trade-offs, thereby increasing the likelihood of broad band NLO response.
Funder
CV Raman International Fellowship for African Researchers justifiable at IIT Kanpur, India
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献