Air-to-Air Path Loss Prediction Based on Machine Learning Methods in Urban Environments

Author:

Zhang Yan1ORCID,Wen Jinxiao1ORCID,Yang Guanshu1ORCID,He Zunwen1ORCID,Luo Xinran1

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Recently, unmanned aerial vehicle (UAV) plays an important role in many applications because of its high flexibility and low cost. To realize reliable UAV communications, a fundamental work is to investigate the propagation characteristics of the channels. In this paper, we propose path loss models for the UAV air-to-air (AA) scenario based on machine learning. A ray-tracing software is employed to generate samples for multiple routes in a typical urban environment, and different altitudes of Tx and Rx UAVs are taken into consideration. Two machine-learning algorithms, Random Forest and KNN, are exploited to build prediction models on the basis of the training data. The prediction performance of trained models is assessed on the test set according to the metrics including the mean absolute error (MAE) and root mean square error (RMSE). Meanwhile, two empirical models are presented for comparison. It is shown that the machine-learning-based models are able to provide high prediction accuracy and acceptable computational efficiency in the AA scenario. Moreover, Random Forest outperforms other models and has the smallest prediction errors. Further investigation is made to evaluate the impacts of five different parameters on the path loss. It is demonstrated that the path visibility is crucial for the path loss.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3