Acceleration of Gas Reservoir Simulation Using Proper Orthogonal Decomposition

Author:

Wang Yi12ORCID,Yu Bo3ORCID,Wang Ye4

Affiliation:

1. National Engineering Laboratory for Pipeline Safety and MOE Key Laboratory of Petroleum Engineering and Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China

2. Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Ministry of Education, Xi’an 710049, China

3. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

4. Key Laboratory of Railway Vehicle Thermal Engineering, Lanzhou Jiaotong University, Ministry of Education, Lanzhou 730070, China

Abstract

High-precision and high-speed reservoir simulation is important in engineering. Proper orthogonal decomposition (POD) is introduced to accelerate the reservoir simulation of gas flow in single-continuum porous media via establishing a reduced-order model by POD combined with Galerkin projection. Determination of the optimal mode number in the reduced-order model is discussed to ensure high-precision reconstruction with large acceleration. The typical POD model can achieve high precision for both ideal gas and real gas using only 10 POD modes. However, acceleration of computation can only be achieved for ideal gas. The obstacle of POD acceleration for real gas is that the computational time is mainly occupied by the equation of state (EOS). An approximation method is proposed to largely promote the computational speed of the POD model for real gas flow without decreasing the precision. The improved POD model shows much higher acceleration of computation with high precision for different reservoirs and different pressures. It is confirmed that the acceleration of the real gas reservoir simulation should use the approximation method instead of the computation of EOS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3