Effect of MicroRNA-138 on Tumor Necrosis Factor-Alpha-Induced Suppression of Osteogenic Differentiation of Dental Pulp Stem Cells and Underlying Mechanism

Author:

Liu Wenzhe1ORCID,Wu Kankui1ORCID,Wu Wancui1ORCID

Affiliation:

1. Department of Stomatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 Guangdong, China

Abstract

High doses of tumor necrosis factor-α (TNF-α) suppress osteogenic differentiation of human dental pulp stem cells (hDPSCs). In the present study, we aimed to explore the role and potential regulatory mechanism of microRNA-138 (miR-138) in the osteogenic differentiation of hDPSCs after treatment with a high dose of TNF-α. The hDPSCs were cultured in osteogenic medium with or without 50 ng/ml TNF-α. The miR-138 levels were upregulated during osteogenic differentiation of the hDPSCs following TNF-α treatment. The miR-138 overexpression accelerated but miR-138 knockdown alleviated the TNF-α-induced suppression of the alkaline phosphatase activity, calcium deposition, and protein abundance of dentin sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and osteopontin during osteogenic differentiation induction of hDPSCs. Additionally, miR-138 overexpression accelerated but miR-138 knockdown alleviated the suppression of the focal adhesion kinase- (FAK-) extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway during osteogenic differentiation induction of hDPSCs under TNF-α treatment. In conclusion, miR-138 accelerates TNF-α-induced suppression of osteogenic differentiation of hDPSCs. Inactivation of the FAK-ERK1/2 signaling pathway may be one of the mechanisms underlying the effect of miR-138. Inhibition of miR-138 expression may be a strategy to weaken the inhibitory effect of high-dose TNF-α on the osteogenic differentiation of hDPSCs.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3