Rural Workplace Sustainable Development of Smart Rural Governance Workplace Platform for Efficient Enterprise Performances

Author:

Wu Yingli1,Ma Wanying2ORCID

Affiliation:

1. Agricultural and Rural Development Institute, Heilongjiang Provincial Academy of Social Sciences, Harbin, China

2. Changchun Guanghua University, College of Business, Jilin, Changchun 130033, China

Abstract

In the long developmental process, China’s agriculture has transformed from organic agriculture to inorganic agriculture. New technologies have made the modernization of agriculture possible. However, most older people who are engaged in agriculture may not completely understand the modernization of agriculture. Based on the limitations of traditional image target detection methods, a deep learning-based pest target detection and recognition method is proposed from a blockchain perspective, to analyze and research agricultural data supervision and governance and explore the effectiveness of deep learning methods in crop pest detection and recognition. The comparative analysis demonstrates that the average precision (AP) of GA-CPN-LAR (global activation-characteristic pyramid network-local activation region) increases by 4.2% compared with other methods. Whether under the Inception or ResNet-50 backbone networks, the AP of GA-CPN-LAR is significantly better than other methods. Compared with the ResNet-50 backbone network, GA-CPN-LAR has higher accuracy and recall rates under Inception. Precision-recall curve measurement shows that the proposed method can significantly reduce the false detection rate and missed detection rate. The GA-CPN-LAR model proposed here has a higher AP value on the MPD dataset than the other target detection methods, which can be increased by 4.2%. Besides, the accuracy and recall of the GA-CPN-LAR method corresponding to two representative pests under the initial feature extractor are higher than the MPD dataset baseline. In addition, the research results of the MPD dataset and AgriPest dataset also show that the pest target detection method based on convolutional neural networks (CNNs) has a good presentation effect and can significantly reduce false detection and missed detection. Moreover, the pest regulation based on blockchain and deep learning comprehensively considers global and local feature extraction and pattern recognition, which positively impacts the conscientization of agricultural data processing and promotes the sustainable development of rural areas.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3