A Cyclic Consistency Motion Style Transfer Method Combined with Kinematic Constraints

Author:

Wang Huaijun12,Du Dandan1,Li Junhuai12ORCID,Ji Wenchao1,Yu Lei12

Affiliation:

1. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China

Abstract

Motion capture technology plays an important role in the production field of film and television, animation, etc. In order to reduce the cost of data acquisition and improve the reuse rate of motion capture data and the effect of movement style migration, the synthesis technology of motion capture data in human movement has become a research hotspot in this field. In this paper, kinematic constraints (KC) and cyclic consistency (CC) network are employed to study the methods of kinematic style migration. Firstly, cycle-consistent adversarial network (CCycleGAN) is constructed, and the motion style migration network based on convolutional self-encoder is used as a generator to establish the cyclic consistent constraint between the generated motion and the content motion, so as to improve the action consistency between the generated motion and the content motion and eliminate the lag phenomenon of the generated motion. Then, kinematic constraints are introduced to normalize the movement generation, so as to solve the problems such as jitter and sliding step in the movement style migration results. Experimental results show that the generated motion of the cyclic consistent style transfer method with kinematic constraints is more similar to the style of style motion, which improves the effect of motion style transfer.

Funder

Project of Xi’an Science and Technology Planning Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3