Application of Multitask Joint Sparse Representation Algorithm in Chinese Painting Image Classification

Author:

Yang Dongyu12ORCID,Ye Xinchen3,Guo Baolong4

Affiliation:

1. School of Arts, Beijing Language and Culture University, Beijing 100083, China

2. Academy of Arts & Design, Tsinghua University, Beijing 100084, China

3. Youth Art Academy, Li Keran Academy of Painting, Beijing 102600, China

4. School of Aerospace Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China

Abstract

This paper presents an in-depth study and analysis of Chinese painting image classification by a multitask joint sparse representation algorithm for texture feature extraction of Chinese painting images and proposes a method to extract texture features directly for the original images. It simplifies the process of image grayscale conversion and preserves the information contained in the original Chinese painting images to the greatest extent. The algorithm uses the ideas of multicolor domain analysis and multiscale analysis, combined with the traditional grayscale coeval matrix to extract texture features. Experiments show that the multiscale grayscale cooccurrence matrix algorithm outperforms the traditional grayscale cooccurrence matrix algorithm and the color grayscale cooccurrence matrix algorithm. The discriminative ability of multiple features for target recognition is integrated by multitask learning, thus improving the robustness and generalization ability of the algorithm; meanwhile, the recognition accuracy is improved by using a two-level multitask learning mode to exclude the interference of a large number of irrelevant dictionary atoms. The experimental results show that the algorithm has higher recognition accuracy and better robustness than the existing sparse representation SAR target recognition algorithm. Configuration recognition experiments are conducted on different configurations of target data, and the experimental results show that the algorithm achieves better configuration recognition accuracy than existing algorithms.

Funder

Beijing Language and Culture University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3