Human Gait Analysis and Prediction Using the Levenberg-Marquardt Method

Author:

Alharbi Abdullah1,Equbal Kamran2,Ahmad Sultan3ORCID,Rahman Haseeb Ur4,Alyami Hashem5

Affiliation:

1. Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

2. Biomedical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

3. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Department of Computer Science & Information Technology, University of Malakand, Chakdara Dir Lower, Pakistan

5. Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia

Abstract

A high-accuracy gait data prediction model can be used to design prosthesis and orthosis for people having amputations or ailments of the lower limb. The objective of this study is to observe the gait data of different subjects and design a neural network to predict future gait angles for fixed speeds. The data were recorded via a Biometrics goniometer, while the subjects were walking on a treadmill for 20 seconds each at 2.4 kmph, 3.6 kmph, and 5.4 kmph. The data were then imported into Matlab, filtered to remove movement artifacts, and then used to design a neural network with 60% data for training, 20% for validation, and remaining 20% for testing using the LevenbergMarquardt method. The mean-squared error for all the cases was in the order of 10−3 or lower confirming that our method is correct. For further comparison, we randomly tested the neural network function with untrained data and compared the expected output with actual output of the neural network function using Pearson’s correlation coefficient and correlation plots. We conclude that our framework can be successfully used to design prosthesis and orthosis for lower limb. It can also be used to validate gait data and compare it to expected data in rehabilitation engineering.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3