Prediction of Heavy Oil Steam Stimulation Based on Data-Driven and Mechanism Model

Author:

Zhao Chaochao12,Min Chao12ORCID,Wang Chuanfei3,Lin Yanfeng1,Long Mengshu1

Affiliation:

1. School of Science, Southwest Petroleum University, Chengdu 610500, Sichuan, China

2. Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, Sichuan, China

3. Research Institute of Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying 257015, Shandong, China

Abstract

In the middle and late stages of heavy oil development, formulating a scientific and reasonable mining plan is the key to improving oilfield efficiency. At present, steam stimulation is still the main development method of heavy oil. The determination of its production is not only limited by boiler conditions, surface pipelines, and wellbore conditions but also by the steam absorption capacity of the formation. Therefore, local analysis cannot achieve the best effect in the whole process of steam stimulation. The mechanism model is the most commonly used method to predict heavy oil production, but too many idealized assumptions make the prediction results quite different from the actual production situation. With the rapid development of machine learning, people can achieve rapid prediction of production through field data. However, when the range of the actual parameter is small, the generalization ability of the model is weak and overfitting occurs. Based on the above background, this paper conducts a coupling study on surface steam pipeline flow, steam injection wellbore flow, and formation flow from the perspective of data-driven. Firstly, based on the correlation coefficient and the feature selection of Random Forest, the importance of the characteristics affecting liquid production and water content was ranked. Secondly, through the comparison of five typical machine learning algorithms, we select the optimal prediction model and optimal characteristics suitable for the sample of this paper. Finally, because of the poor generalization ability of the prediction model, we sampled the mechanism model and increased the diversity of steam dryness samples. We find that the accuracy of the optimal prediction model is improved and the generalization ability of the model is improved after the training of new samples. This paper provides a new idea for the production prediction of heavy oil steam stimulation reservoirs, which is helpful for the efficient development of heavy oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference31 articles.

1. Prediction model of economic oil steam ratio limit for heavy-oil stimulation;M. Zhang;Special Oil & Gas Reservoirs,2020

2. Reservoir Heating by Hot Fluid Injection

3. Improved steam soak predictive model;J. Hou;Petroleum Exploration and Development,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3