Numerical Modeling of Coupled Surge-Heave Sloshing in a Rectangular Tank with Baffles

Author:

Ren Lv12,Zou Yinjie34,Tang Jinbo5,Jin Xin34ORCID,Li Dengsong6,Liu Mingming3

Affiliation:

1. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443000, China

2. China Renewable Energy Engineering Institute, Beijing 100120, China

3. College of Energy, Chengdu University of Technology, Chengdu 610059, China

4. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

5. Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

6. College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya-an, Sichuan 625014, China

Abstract

Liquid sloshing under coupled surge and heave excitations in a rectangular tank has been numerically investigated by applying a Navier–Stokes solver. Fieriest coupled sloshing was further considered, and the internal baffle was expected to suppress the violent sloshing wave. After getting fully validated against available results from the literatures, the numerical model was applied to research coupled sloshing, and both vertical baffle and horizontal baffle have been considered. Due to the strong vortexes created by the sharper corners of the baffles and the reduction of the effective water bulk climbing through the tank walls, the sloshing was dramatically reduced. The increase of the baffle distance away from the tank bottom led to a decrease in the sloshing wave. It was noted that the baffle near the free surface caused the maximal dissipation. The frequency response of the sloshing wave was accordingly illustrated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3