Affiliation:
1. College of Internet of Things Engineering, Hohai University, Changzhou 213022, China
Abstract
Localization is recognized among the topmost vital features in numerous wireless sensor network (WSN) applications. This paper puts forward energy-efficient clustering and localization centered on genetic algorithm (ECGAL), in which the residual energy, distance estimation, and coverage connection are developed to form the fitness function. This function is certainly fast to run. The proposed ECGAL exhausts a lesser amount of energy and extends wireless network existence. Finally, the simulations are carried out to assess the performance of the proposed algorithm. Experimental results show that the proposed algorithm approximates the unknown node location and provides minimum localization error.
Funder
National Key R&D Program of China
Subject
Multidisciplinary,General Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献