Energy-Efficient Clustering and Localization Technique Using Genetic Algorithm in Wireless Sensor Networks

Author:

Chen Junfeng1ORCID,Sackey Samson Hansen1ORCID,Anajemba Joseph Henry1ORCID,Zhang Xuewu1ORCID,He Yurun1ORCID

Affiliation:

1. College of Internet of Things Engineering, Hohai University, Changzhou 213022, China

Abstract

Localization is recognized among the topmost vital features in numerous wireless sensor network (WSN) applications. This paper puts forward energy-efficient clustering and localization centered on genetic algorithm (ECGAL), in which the residual energy, distance estimation, and coverage connection are developed to form the fitness function. This function is certainly fast to run. The proposed ECGAL exhausts a lesser amount of energy and extends wireless network existence. Finally, the simulations are carried out to assess the performance of the proposed algorithm. Experimental results show that the proposed algorithm approximates the unknown node location and provides minimum localization error.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering Uniformity Methods for Energy Efficiency in Wireless Sensor Networks;Journal of Machine and Computing;2024-07-05

2. A Review on Metaheuristic Algorithms Employed in WSN;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

3. Optimization Algorithms for Wireless Sensor Networks Node Localization: An Overview;IEEE Access;2024

4. An Efficient Optimal Localization Technique for WSN Using Hybrid Machine Learning Algorithms;Wireless Personal Communications;2023-12

5. Optimizing environmental monitoring in IoT: integrating DBSCAN with genetic algorithms for enhanced clustering;International Journal of Computers and Applications;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3