Comparative Analysis of Longitudinal and Transverse Vibration Characteristics of Ocean Mining Pipe

Author:

Liu Qiang1,Xiao Lin-jing1ORCID

Affiliation:

1. College of Mechanical & Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

In this paper, the 5000 m mining pipe is taken as the research object, and the transverse and longitudinal vibration laws of the pipe under different working conditions are analyzed. Based on the finite element method (FEM), the pipe is discretized and calculated by the Wilson-θ Wilson - θ integral method; finally, the corresponding vibration laws of the mining pipe are obtained. The research shows that the mining pipe vibration responses are irregular motion, with the obvious oscillation phenomenon, and the overall vibration trend decreases first and then increases from the top to the bottom; the maximum vibration response occurs at the pipe top. Under the same working conditions, increasing the towing velocity will decrease the overall longitudinal vibration amplitude and increase the overall transverse vibration amplitude. While the ore bin weight will increase the longitudinal vibration amplitude and decrease the transverse vibration amplitude, increasing the mining pipe large diameter stepped section length and damping will decrease the longitudinal and transverse vibration simultaneously. When the towing velocity is between 0–2.8 m/s, the longitudinal vibration intensity is large, which is the main vibration mode. When the towing velocity is 2.8 m/s, the critical point is reached, and the longitudinal and transverse vibrations have the same intensity. When the towing velocity is greater than 2.8 m/s, the transverse vibration intensity is gradually greater than the longitudinal vibration intensity; at this time, the control of the transverse vibration should be appropriately increased.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference41 articles.

1. ShiH. H.The configuration design of composite cable operation and linkage control in polymetallic nodule mining system2018Xiangtan, ChinaXiangtan UniversityMaster’s thesis

2. PengY.Experimental study on conveying characteristics of coarse grain ore in flexible pipe of the deep sea mining system2016Beijing, ChinaMinzu University of ChinaMaster’s thesis

3. FuY.Study on flexible pipe conveying characteristics in the deep sea mining2019Beijing, ChinaMinzu University of ChinaMaster’s thesis

4. DengY.Software design of spatial configuration and dynamic analysis of flexible pipeline in deep-sea mining system2017Xiangtan, ChinaXiangtan UniversityMaster’s thesis

5. Experimental study for lateral motion of 1 km articulated lifting subsystem;Y.-L. Feng;Journal of China University of Mining & Technology,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3