Experimental Study on Sand Inrush Hazard of Water-Sand Two-Phase Flow in Broken Rock Mass

Author:

Xu Junce1ORCID,Pu Hai12ORCID,Chen Jiarui3ORCID,Sha Ziheng1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China

2. College of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830091, China

3. Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu 223001, China

Abstract

In the western region of China, coal mining activities are prone to induce water and sand inrush disasters, which seriously threaten the safe production of the coal resources. In this paper, an experimental device was designed to simulate the process of water and sand inrush, and then, the control factors of the disasters in the broken rock mass in the goaf were investigated. Also, the seepage fracture channels in the broken rock mass were simplified by using the 3D printing technology, and the effects of fracture aperture and angle on the seepage characteristics of water-sand mixtures were analyzed. The experimental results showed that the porosity and skeleton structure of the broken rock mass were the key factors to control the water and sand inrush disasters. The smaller the initial porosity of the broken rock mass, the weaker its permeability, and the less probable to form a dominant channel for the water and sand inrush disasters. Conversely, the broken rock mass structure with larger size gradation was more likely to form the permeable channels, and the quality of the sand inrush was greater. In addition, it was also found that the angle of the fractures within the broken rock mass affected the seepage characteristics of water-sand mixture, and the permeability showed an exponential relationship with the fracture angle. Meanwhile, as the fracture aperture increased, the fracture angle generated greater influence on the permeability. Finally, we proposed the water and sand inrush prevention and control technology based on the experiment results. The results of this study can provide a reference for the control of water and sand inrush disasters in western China.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3