Destabilization of Immersed Dense Granular Material Submitted to Localized Fluidization: An Experimental and Numerical Study

Author:

Dramé Aboubacar Sidiki1ORCID,Wang Li1ORCID,Zhang Yanping2

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Central Research Institute of Building and Construction Co.Ltd., Beijing 100088, China

Abstract

An alternative experimental approach and a numerical analysis for the study of destabilization by localized fluidization of an immersed dense granular material are presented. To visualize the evolutions of the internal structure of the granular medium, the hydrogel beads, composed of about 99% of water and having substantially the same refraction indexes, are used as solid phase. A LED lighting system is used in place of a laser lighting system. As a result, the optical access restriction of porous structure is removed. A real economic alternative for the experimental study of fluid-grain coupling during destabilization by localized fluidization of a granular material is created. The experimental phenomenology presented in the literature is verified: the system passes successively through three different stationary regimes: static regime, fluidized cavity regime, and fluidized chimney regime. Some restrictions of using hydrogel beads as particles in the study of liquid-solid interaction are also discussed.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3