Data Stream Classification Based on the Gamma Classifier

Author:

Uriarte-Arcia Abril Valeria1,López-Yáñez Itzamá2,Yáñez-Márquez Cornelio1,Gama João3,Camacho-Nieto Oscar2

Affiliation:

1. Neural Networks and Unconventional Computing Lab/Alpha-Beta Group, Centro de Investigación en Computación, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz, Colonia Nuevo Industrial Vallejo, Delegación Gustavo A. Madero, 07738 Mexico City, DF, Mexico

2. Intelligent Computing Lab/Alpha-Beta Group, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz, Colonia Nuevo Industrial Vallejo, Delegación Gustavo A. Madero, 07700 Mexico City, DF, Mexico

3. LIAAD-INESC INESC TEC and Faculty of Economics, University of Porto, Rua Dr. Roberto Frias 378, 4200-378 Porto, Portugal

Abstract

The ever increasing data generation confronts us with the problem of handling online massive amounts of information. One of the biggest challenges is how to extract valuable information from these massive continuous data streams during single scanning. In a data stream context, data arrive continuously at high speed; therefore the algorithms developed to address this context must be efficient regarding memory and time management and capable of detecting changes over time in the underlying distribution that generated the data. This work describes a novel method for the task of pattern classification over a continuous data stream based on an associative model. The proposed method is based on the Gamma classifier, which is inspired by the Alpha-Beta associative memories, which are both supervised pattern recognition models. The proposed method is capable of handling the space and time constrain inherent to data stream scenarios. The Data Streaming Gamma classifier (DS-Gamma classifier) implements a sliding window approach to provide concept drift detection and a forgetting mechanism. In order to test the classifier, several experiments were performed using different data stream scenarios with real and synthetic data streams. The experimental results show that the method exhibits competitive performance when compared to other state-of-the-art algorithms.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3