The Influence Mechanism of the Master Weak Interlayer on Bench Blasting Effect and Its Evaluation Method

Author:

Nan Senlin12ORCID,Guan Weiming12ORCID,Hu Tao3,Shi Weisheng4,Zhang Junhui12ORCID,Chen Hui12,Cong Junyu5,Liu Huabin12ORCID

Affiliation:

1. College of Geology and Mines Engineering, Xinjiang University, Urumqi 830047, China

2. Autonomous Region Experimental Teaching Demonstration Center for Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China

3. XinJiang Coal Design and Research Institute Co., Ltd., Urumqi 830091, China

4. Gezhouba Yipuli Xinjiang Blasting Engineering Co., Ltd., Urumqi 830046, China

5. GDEM Technology Beijing, Co., Ltd., Beijing 100096, China

Abstract

The weak interlayers in an open-pit blasting bench affect the uniform distribution of explosive energy. To explore the mechanistic influence of a weak interlayer on the effect of blasting, 9 sets of numerical blasting experiments were constructed using the orthogonal experiment method. The degree of bench crushing after blasting, the maximum velocity of the rock mass at 0.05 s, and the displacement of the back of the bench were thus investigated. The analysis revealed that the impact of the thickness of the weak interlayer, its wave impedance, and its location of occurrence on the bench blasting indicated an ordered decreasing effect. Based on this, the evaluation method for the master weak interlayer and the design plan of the specific charge structure were proposed. The evaluated design proposals were verified through both numerical and field tests. The research results will provide a scientific basis to determine a reasonable charge structure of the bench blasting of rock masses containing weak interlayers.

Funder

Xinjiang University

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3