Effect of miR-144-3p-Targeted Regulation of PTEN on Proliferation, Apoptosis, and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells under Stretch

Author:

Ling Shiyong1,Luo Xi2,Lv Bo1,Wang Hua1,Xie Mengzhi3,Huang Kai1,Sun Jingchuan2ORCID

Affiliation:

1. Department of Orthopedics, Zhabei Central Hospital, Jing’an District, Shanghai 200070, China

2. Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China

3. Department of Radiology, Zhabei Central Hospital, Jing’an District, Shanghai 200070, China

Abstract

Objective. To investigate the effects of miR-144-3p-targeted regulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene on proliferation, apoptosis, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under retraction force. Methods. The BMSCs of rats were randomly divided into the tension MSC group with detrusor stimulation and the MSC group without detrusor stimulation, after which osteogenic differentiation of BMSCs was induced in both groups. Alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic differentiation ability of the two groups of cells. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of miR-144-3p and PTEN in the two groups of cells after osteogenic differentiation. Bioinformatics website and dual luciferase reporter were used to detect the relationship between miR-144-3p and PTEN. The tension MSC group was used as a control group, and miR-144-3p mimics (miR-144-3p mimic group), mimic controls (mimic-NC group), PTEN interferers (si-PTEN group), and interference controls (si-NC group) were transfected into BMSCs. The BMSCs were then continuously stimulated for 24 h using a Flexercell in vitro cellular mechanics loading device, applying a draft force at a frequency of 1 Hz and a deformation rate of 18%. The cell proliferation was detected by Cell Counting Kit-8 (CCK-8) colorimetric assay; the expression levels of cyclin, cyclin-dependent kinases (CDK), BCL2-associated X (BAX), B-cell lymphoma-2 (BCL-2), and other cell cycle and apoptosis related proteins were detected by western blot (WB); and the osteogenic differentiation ability of MSC cells was detected by ALP staining and alizarin red staining. Results. Compared with the MSC group, the level of miR-144-3p was significantly lower and the level of PTEN was significantly higher in the tension MSC group. ALP staining showed normal activity in the MSC group and decreased ALP activity in the tension MSC group compared to the MSC group. Alizarin red staining in the MSC group showed scattered calcium nodule formation, and alizarin red staining showed red nodules with a more uniform color distribution. Compared to the MSC group, the tension MSC group showed fewer, smaller, and lighter staining mineralized nodules. Compared with the tension group and mimic-NC group (si-NC group), the proliferation rate of cells in the miR-144-3p mimic group (si-PTEN group) was significantly higher; the expression levels of PTEN and BAX were significantly lower; and the expression levels of cyclin, CDK, and BCL-2 protein were significantly higher. ALP staining results revealed that the miR-144-3p mimic group (si-PTEN group) showed significantly higher osteogenic differentiation ability and ALP activity of MSC than the tension group and mimic-NC group (si-NC group). Conclusion. miR-144-3p may inhibit apoptosis and promote proliferation and osteogenic differentiation of BMSCs under tension by targeting and regulating PTEN.

Publisher

Hindawi Limited

Subject

Emergency Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3