Experimental Investigation of the Seepage-Induced Failure Process in Granular Soils

Author:

Wang Yu1ORCID,Duan Xiangbao2,Gu Yanchang2,Wang Shijun2

Affiliation:

1. College of Architectural Engineering, Jiangsu Open University, No. 399, The North Road of Jiangdong, Nanjing, Jiangsu, China

2. Nanjing Hydraulic Research Institute, No. 223, Guangzhou Road, Nanjing, Jiangsu, China

Abstract

Seepage-induced failure may disable the bearing capacity of foundations in dams and embankments. However, the evolution mechanism of the seepage failure process in granular soils is not well understood. In this paper, a series of laboratory hydraulic tests were performed to investigate the seepage failure process in sandy gravels and fine-grained sands. Seepage behaviors of the hydraulic gradient, seepage flow velocity, and permeability coefficient were observed, and then, the Reynolds number was obtained to describe the seepage regime. By linking the hydraulic gradients with the Reynolds number, the seepage failure process was quantitatively divided into four phases: (i) incubation ( Re < 0.85 ), (ii) formation ( 0.85 Re 5 ), (iii) evolution ( 5 < Re 50 ), and (iv) destruction ( 50 < Re ). The findings of the study identified an approximately linear relationship between the hydraulic gradient and the seepage velocity in the phases of incubation and formation in which the viscous drag effects are not negligible, corroborating Darcy’s view. However, in the phases of evolution and destruction, the hydraulic gradient and the seepage velocity are nonlinearly related, indicating that the inertial force plays a leading role, and the quadratic equation is relevant for the regime transition from laminar flow to turbulent flow. Finally, the mechanism of each phase in the seepage failure process was clarified. Fine content and uniformity coefficient are internal factors that affect the potential of seepage failure, while the seepage force that drives the transport of fine particles is an underlying cause that promotes the development of seepage failure. This study will be quite useful in identifying the limits of applicability of the well-known “Darcy’s law,” in further improving the physical modelling associated with fluid flow through granular soils.

Funder

Fundamental Research Foundation of the Central Public Welfare Research Institutes

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3