Enhancement of Local Crowd Location and Count: Multiscale Counting Guided by Head RGB-Mask

Author:

Ren Guoyin12ORCID,Lu Xiaoqi13ORCID,Wang Jingyu2,Li Yuhao2

Affiliation:

1. School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China

2. School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China

3. Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

Background. In crowded crowd images, traditional detection models often have the problems of inaccurate multiscale target count and low recall rate. Methods. In order to solve the above two problems, this paper proposes an MLP-CNN model, which combined with FPN feature pyramid can fuse the feature map of low-resolution and high-resolution semantic information with less computation and can effectively solve the problem of inaccurate head count of multiscale people. MLP-CNN “mid-term” fusion model can effectively fuse the features of RGB head image and RGB-Mask image. With the help of head RGB-Mask annotation and adaptive Gaussian kernel regression, the enhanced density map can be generated, which can effectively solve the problem of low recall of head detection. Results. MLP-CNN model was applied in ShanghaiTech and UCF_ CC_ 50 and UCF-QNRF. The test results show that the error of the method proposed in this paper has been significantly improved, and the recall rate can reach 79.91%. Conclusion. MLP-CNN model not only improves the accuracy of population counting in density map regression, but also improves the detection rate of multiscale population head targets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3