An Image Classification Algorithm Based on Hybrid Quantum Classical Convolutional Neural Network

Author:

Li Wei1,Chu Peng-Cheng12,Liu Guang-Zhe12,Tian Yan-Bing1,Qiu Tian-Hui12ORCID,Wang Shu-Mei12ORCID

Affiliation:

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China

2. School of Science, Qingdao University of Technology, Qingdao, China

Abstract

Quantum machine learning is emerging as a strategy to solve real-world problems. As a quantum computing model, parameterized quantum circuits provide an approach for constructing quantum machine learning algorithms, which may either realize computational acceleration or achieve better algorithm performance than classical algorithms. Based on the parameterized quantum circuit, we propose a hybrid quantum-classical convolutional neural network (HQCCNN) model for image classification that comprises both quantum and classical components. The quantum convolutional layer is designed using a parameterized quantum circuit. It is used to perform linear unitary transformation on the quantum state to extract hidden information. In addition, the quantum pooling unit is used to perform pooling operations. After the evolution of the quantum system, we measure the quantum state and input the measurement results into a classical fully connected layer for further processing. We demonstrate its potential by applying HQCCNN to the MNIST dataset. Compared to a convolutional neural network in a similar architecture, the results reveal that HQCCNN has a faster training speed and higher testing set accuracy than a convolutional neural network.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3