Modeling Spatial Riding Characteristics of Bike-Sharing Users Using Hotspot Areas-Based Association Rule Mining

Author:

Sun Chao1ORCID,Lu Jian1ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing 210000, China

Abstract

This study aims to investigate the spatial riding characteristics under different demand scenarios using association rule mining with hotspot detection, and to establish the subordinate rules between bike-sharing demand and land elements and between land elements. To reduce deviation from modifiable areal unit problem (MAUP) and improve objectivity and accuracy, we impose spatial constraints using the hotspot detection model instead of the square grid and traditional traffic zone. The bike-sharing trajectory-based kernel density algorithm is employed to explore the optimum analysis locations and the analysis areas with the relatively high demand. More importantly, the research featured here involves five demand scenarios for the differentiation of riding characteristics. The results show that the most significant influencers on bike-sharing demand include financial insurance facilities, dining facilities, and landscapes. As for characteristics of riding destination, the combinations between landscapes and financial insurance facilities, between landscapes and companies/enterprises, and between companies/enterprises and financial insurance facilities are more likely to be visited simultaneously. These findings make us understand urban spatial structure in response to traffic plan and provide evidence for bike-sharing dispatch optimization.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coupling efficiency between bike-sharing demand and land use: data envelopment analysis;Proceedings of the Institution of Civil Engineers - Transport;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3