In Vitro Antidiabetic, Antioxidant, and Cytotoxic Evaluation of Honeybush Tea (Cyclopia genistoides) Extracts

Author:

Cele Nkosinathi D.1ORCID,Mthimunye Ntokozo E.1,Mkhwanazi Qiniso B.1,Nxumalo Seluleko1,Tshabuse Freedom1,Pooe Ofentse J.2ORCID,Chellan Nireshni34,Mthembu Matthew S.1,Opoku Andy R.1

Affiliation:

1. Department of Biochemistry and Microbiology, University of Zululand, Richards bay, South Africa

2. Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Durban, South Africa

3. Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa

4. Department of Medical Physiology, Stellenbosch University, Cape Town, South Africa

Abstract

Background. This study evaluated in vitro antidiabetic and antioxidant properties of different extracts (n-hexane, dichloromethane (DCM), and 70% ethanol) of honeybush tea (Cyclopia genistoides). Over a period of 28 days, antiprotein glycation was evaluated and some antidiabetic indicators (α-amylase, α-glucosidase, and pancreatic lipase inhibitory effects) and antioxidant activities (DPPH, ABTS, hydroxyl radical, metal ion chelating, and reducing power) for each of the crude extracts were also investigated. The results showed that all of the tested C. genistoides extracts had strong α-amylase and lipase inhibitory activity in a concentration-dependent manner with IC50 values from 0.018 μg/ml (DCM extract) to 9.93 μg/ml (n-hexane extract), respectively. The extracts also displayed inhibitory effects on protein glycation between the 14th and 28th days. The DCM and ethanolic extracts further exhibited strong antioxidant activities as they effectively scavenged most of the radicals tested, with IC50 values ranging from 0.014–0.048 mg/ml to 0.019–0.043 mg/ml. Two hundred and seventy-four chemical constituents had been identified by GC-MS, with the n-hexane extract having the highest number of peaks (127) followed by the DCM extract (107). Six compounds were identified across all the following three extracts: decane (RT: 6.4), undecane (RT: 7.7), dodecane (RT: 9.00), phytol (RT: 21.32), heptadecanoic acid, 9-methyl, methyl ester (RT: 21.65), and 9-octadecenamide (RT: 24.30). The cytotoxicity of the extracts against C3A cell lines was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, which demonstrated that honeybush tea had a toxicity effect ranging from 66.3–88.4 μg/ml on C3A cell lines. The results showed that honeybush has antioxidant and antidiabetic activities, which could be partially attributed to the phytochemical compounds identified within the extracts.

Funder

National Treasury

Publisher

Hindawi Limited

Subject

Cell Biology,Pharmacology,Food Science,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3