Modeling of Transient Flow in Unsaturated Geomaterials for Rainfall-Induced Landslides Using a Novel Spacetime Collocation Method

Author:

Ku Cheng-Yu12ORCID,Liu Chih-Yu1,Su Yan3,Xiao Jing-En1

Affiliation:

1. Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

2. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

3. Department of Water Resource and Harbor Engineering, College of Civil Engineering, Fuzhou University, Fuzhou, China

Abstract

The modeling of transient flow in unsaturated soils for rainfall-induced landslides using a novel spacetime collocation method is presented. A numerical solution obtained in the spacetime coordinate system is approximated by superpositioning Trefftz basis functions satisfying the linearized Richards equation for collocation points on the spacetime domain boundary. The Gardner exponential model is adopted to derive the linearized Richards equation to describe the soil-water characteristic curve in unsaturated soils. To deal with the rainfall-induced landslides, the infinite slope stability analysis coupled with the proposed meshless method with the consideration of the fluctuation of time-dependent matric suction is developed. The proposed method is validated for several test problems. Application examples of transient modeling of flow for rainfall-induced landslides in homogenous unsaturated soils are also conducted. Numerical results demonstrate that the proposed method is highly accurate to deal with transient flow in unsaturated soils for rainfall-induced landslides. In addition, it is found that the numerical method using the Richards equation with the Gardner model may provide a promising solution for different soil textures.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3