Estradiol Alleviates Intervertebral Disc Degeneration through Modulating the Antioxidant Enzymes and Inhibiting Autophagy in the Model of Menopause Rats

Author:

Jin Lin-Yu1,Lv Zhen-Dong1,Wang Kun1,Qian Lie1,Song Xiao-Xing2ORCID,Li Xin-Feng1ORCID,Shen Hong-Xing1ORCID

Affiliation:

1. Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China

2. Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Objective. To investigate the effects of menopause on redox balance in the intervertebral disc and to examine whether oxidative stress and autophagy were associated with disc degeneration in menopause rats. Methods. Thirty female Sprague-Dawley rats were randomly divided into three groups (sham, ovariectomized with vehicle, and ovariectomized with estrogen). At the end of the 3-month treatment, the rats were examined by 3.0 T MRI. Serum estradiol (E2) level was measured. Redox balance of nucleus pulposus was determined by measuring total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), and oxidized glutathione (GSSG). Transmission electron microscopy (TEM), immunohistochemical staining, and Western blot were used to determine the nucleus pulposus autophagy level. At the same time, Spearman’s correlation coefficient was used to describe the relationship between intervertebral disc grade, oxidative stress status, serum E2, and autophagy level. Results. The level of serum E2 was significantly decreased by ovariectomy and can be corrected by the estrogen replacement therapy (ERT). In OVX rats, an increased oxidative stress and high level of autophagy were observed in nucleus pulposus tissue. ERT prevented the intervertebral disc degeneration (IVDD), restored the redox balance, and reduced autophagy level. Conclusion. Ovariectomy induced oxidative stress, autophagy, and intervertebral disc degeneration. Autophagy of the intervertebral disc was negatively correlated with oxidative stress, and the level of autophagy can be reduced by ERT through modulating the redox balance and downregulating the autophagy level. Regulating the redox balance of IVD may be a potential therapeutic option for degeneration of the disc in the postmenopausal women.

Funder

Medico-Engineering cooperation Fund of Shanghai Jiaotong University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3