Affiliation:
1. Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
Abstract
Let M be a monoid, and let L be a commutative idempotent submonoid. We show that we can find a complete set of orthogonal idempotents L^0 of the monoid algebra A of M such that there is a basis of A adapted to this set of idempotents which is in one-to-one correspondence with elements of the monoid. The basis graph describing the Peirce decomposition with respect to L^0 gives a coarse structure of the algebra, of which any complete set of primitive idempotents gives a refinement, and we give some criterion for this coarse structure to actually be a fine structure, which means that the nonzero elements of the monoid are in one-to-one correspondence with the vertices and arrows of the basis graph with respect to a set of primitive idempotents, with this basis graph being a canonical object.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献