Neural Network-Based Approach for Evaluating College English Teaching Methodology

Author:

Wang Yue1ORCID,Zhang Ying2,Dong Zhigui2

Affiliation:

1. Department of Foreign Languages, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning, China

2. College of Innovation and Entrepreneurship, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning, China

Abstract

A fair and scientific method of evaluating collegiate English instruction is currently lacking. Traditional methods are commonly used to evaluate the quality of college English education in terms of the standard statistical analysis evaluation model. As the evaluation of English teaching is a nonlinear issue, the above strategies have achieved some good results but have certain limitations. They are not scientific and objective in the selection of evaluation indicators, or in the setting of evaluation index weights, and there is a certain degree of subjectivity. Artificial neural network (ANN) is widely used in massive fields due to its characteristics of nonlinear processing, adaptive learning, and high fault tolerance. As a kind of neural network, BP neural network has strong nonlinear mapping ability, so it is feasible and scientific to solve the nonlinear relationship of college English teaching evaluation (ETE). Therefore, in this work, we first designed an ETE system index. Then, a strategy of college ETE with BP network is designed, which can carry out high-performance modeling for the designed teaching evaluation index. In order to alleviate the issue of slow convergence speed for BP network and fall into local optimum, this work also combines particle swarm algorithm with BP network to further improve network performance. Massive experiments have proved the reliability and effectiveness of this work.

Funder

Doctor Start-Up Fund Project of Liaoning Institute of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3