CKAP2L Promotes Esophageal Squamous Cell Carcinoma Progression and Drug-Resistance by Modulating Cell Cycle

Author:

Chen Wenhu1ORCID,Wang Yu2,Wang Lifang3,Zhao Hongguang4,Li Xiaoyan1ORCID

Affiliation:

1. School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China

2. School of Pharmacy, Hangzhou Medical College, Hangzhou, China

3. College of Innovation & Entrepreneurship, Hangzhou Medical College, Hangzhou, China

4. Department of Thoracic Surgery, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer and the leading cause of cancer-related mortality worldwide, especially in Asia. In this study, the gene CKAP2L was selected by GEO, TCGA, and GTEx database analysis. The high expression of CKAP2L is related to the occurrence and development of ESCC. In addition, CKAP2L knockdown can inhibit the growth and migration of ESCC cells, while CKAP2L overexpression has the opposite effect. Furthermore, in vivo experiments indicated that down-regulation of CKAP2L can inhibit the tumorigenesis of ESCC cells. KEGG pathway analysis and the STRING database explored the relationship between cell cycle and CKAP2L and verified that depletion of CKAP2L markedly arrested cell cycle in the G2/M phase. Meanwhile, CKAP2L knockdown increased the sensitivity of ESCC cells to flavopiridol, the first CDK inhibitor to be tested in clinical trials, leading to an observable reduction in cell proliferation and an increase in cellular apoptosis. In brief, we identified CKAP2L as a tumor promoter, potential prognostic indicator, and therapeutic target of ESCC, which may play a role in regulating cell cycle progression.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3