Affiliation:
1. School of Public Administration, China University of Mining and Technology, Xuzhou 221008, China
2. Law & Politics School, Suqian University, Suqian 223800, China
Abstract
The influencing factors of community risk are complex. For the low accuracy of traditional prediction model, a multichannel convolutional neural network community risk prediction model is proposed by improving convolutional neural network of deep learning. First of all, in the community risk prediction model, the structure of multichannel input convolutional neural network is selected. Then, add it into the full connection layer. Subsequently, the DenseNet layer is added to establish connections between different network layers. Finally, the receptive field is improved, and the gradient disappearance is solved. Thus, the prediction accuracy of model is improved. Compared with the traditional model, the proposed multichannel convolutional neural network model has better prediction accuracy. In addition, it performs better on the three indicators, namely, correlation coefficient
, coefficient of determination
, and mean square root error RMSE. Compared with the commonly used LSTM model and logic regression model, the proposed model also has certain advantages, which is more suitable for community risk prediction.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献