Tumor Necrosis Factor Alpha Deficiency Improves Endothelial Function and Cardiovascular Injury in Deoxycorticosterone Acetate/Salt-Hypertensive Mice

Author:

Cai Ruiping1,Hao Yun2,Liu Yue-Yang1,Huang Lei1,Yao Yang1,Zhou Ming-Sheng13ORCID

Affiliation:

1. Department of Physiology, Shenyang Medical College, Shenyang 110034, China

2. Department of Physiology, Jinzhou Medical University, Jinzhou 121001, China

3. The Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China

Abstract

It has been shown that the inflammatory cytokine tumor necrosis factor α (TNFα) plays a role in the development of hypertension and end-stage renal diseases. We hypothesize that TNFα contributes to endothelial dysfunction and cardiac and vascular injury in deoxycorticosterone acetate (DOCA)/salt-hypertensive mice. The wild-type or TNFα-deficient mice were uninephrectomized and implanted with DOCA pellet treatment for 5 weeks; the mice were given either tap water or 1% NaCl drinking water. DOCA mice developed hypertension (systolic blood pressure (SBP): 167±5 vs. 110±4mmHg in control group, p<0.05), cardiac and vascular hypertrophy, and the impairment of endothelium-dependent relaxation to acetylcholine (EDR). TNFα deficiency improved EDR and lowered cardiac and vascular hypertrophy with a mild reduction in SBP (152±4 vs. 167±5mmHg in DOCA group, p<0.05) in DOCA mice. The mRNA expressions of the inflammatory cytokines, including TNFα, interleukin 1β (IL1β), monocyte chemotactic protein 1 (MCP1), and monocyte/macrophage marker F4/80 were significantly increased in the aorta of DOCA-hypertensive mice; TNFα deficiency reduced these inflammatory gene expressions. DOCA-hypertensive mice also exhibited an increase in the vascular oxidative fluorescence intensities, the protein expressions of gp91phox and p22phox, and the fibrotic factors transforming growth factor β and fibronectin. TNFα deficiency reduced oxidative stress and fibrotic protein expressions. The DOCA mice also showed a decrease in the protein expression of eNOS associated with increased miR155 expression; TNFα deficiency prevented a decrease in eNOS expression and an increase in miR155 expression in DOCA mice. These results support the idea that TNFα significantly contributes to vascular inflammation, vascular dysfunction, and injury in hypertension.

Funder

Gannan Medical University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3