Evaluation of Regional Climatic Model Simulated Aerosol Optical Properties over South Africa Using Ground-Based and Satellite Observations

Author:

Tesfaye M.12,Botai J.1,Sivakumar V.13,Mengistu Tsidu G.4

Affiliation:

1. Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa

2. National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa

3. Discipline of Physics, School of Chemistry and Physics, University of KwaZulu Natal, Westville, Durban 4000, South Africa

4. Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Abstract

The present study evaluates the aerosol optical property computing performance of the Regional Climate Model (RegCM4) which is interactively coupled with anthropogenic-desert dust schemes, in South Africa. The validation was carried out by comparing RegCM4 estimated: aerosol extinction coefficient profile, Aerosol Optical Depth (AOD), and Single Scattering Albedo (SSA) with AERONET, LIDAR, and MISR observations. The results showed that the magnitudes of simulated AOD at the Skukuza station (24°S, 31°E) are within the standard deviation of AERONET and ±25% of MISR observations. Within the latitudinal range of 26.5°S to 24.5°S, simulated AOD and SSA values are within the standard deviation of MISR retrievals. However, within the latitude range of 33.5°S to 27°S, the model exhibited enhanced AOD and SSA values when compared with MISR observations. This is primarily associated with the dry bias in simulated precipitation that leads to the overestimation of dust emission and underestimation of aerosol wet deposition. With respect to LIDAR, the model performed well in capturing the major aerosol extinction profiles. Overall, the results showed that RegCM4 has a good ability in reproducing the major observational features of aerosol optical fields over the area of interest.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3