A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences

Author:

Soler-Toscano Fernando12ORCID,Zenil Hector234ORCID

Affiliation:

1. Grupo de Lógica, Lenguaje e Información, Universidad de Sevilla, Sevilla, Spain

2. Algorithmic Nature Group, LABORES, Paris, France

3. Algorithmic Dynamics Lab, Center for Molecular Medicine, Science for Life Laboratory (SciLifeLab), Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden

4. Group of Structural Biology, Department of Computer Science, University of Oxford, Oxford, UK

Abstract

Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity and that, usually, generic lossless compression algorithms fall short at characterizing features other than statistical ones not different from entropy evaluations, here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure m calculated from the output distribution of small Turing machines. We introduce and justify finite approximations mk that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both m and mk and compare them to Levin’s Universal Distribution. We provide error estimations of mk with respect to m. Finally, we present an application to integer sequences from the On-Line Encyclopedia of Integer Sequences, which suggests that our AP-based measures may characterize nonstatistical patterns, and we report interesting correlations with textual, function, and program description lengths of the said sequences.

Funder

Vetenskapsrådet

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3