Rolling Bearing Diagnosing Method Based on Time Domain Analysis and Adaptive FuzzyC-Means Clustering

Author:

Fu Sheng1,Liu Kun1,Xu Yonggang1,Liu Yi1

Affiliation:

1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Vibration signal analysis is one of the most effective methods for mechanical fault diagnosis. Available part of the information is always concealed in component noise, which makes it much more difficult to detect the defection, especially at early stage of the development. This paper presents a new approach for mechanical fault diagnosis based on time domain analysis and adaptive fuzzyC-means clustering. By analyzing vibration signal collected, nine common time domain parameters are calculated. This lot of data constitutes data matrix as characteristic vectors to be detected. And using adaptive fuzzyC-means clustering, the optimal clustering number can be gotten then to recognize different fault types. Moreover, five parameters, including variance, RMS, kurtosis, skewness, and crest factor, of the nine are selected as the new eigenvector matrix to be clustered for more optimal clustering performance. The test results demonstrate that the proposed approach has a sensitive reflection towards fault identifications, including slight fault.

Funder

National Science and Technology Major Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3