Affiliation:
1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
Abstract
Vibration signal analysis is one of the most effective methods for mechanical fault diagnosis. Available part of the information is always concealed in component noise, which makes it much more difficult to detect the defection, especially at early stage of the development. This paper presents a new approach for mechanical fault diagnosis based on time domain analysis and adaptive fuzzyC-means clustering. By analyzing vibration signal collected, nine common time domain parameters are calculated. This lot of data constitutes data matrix as characteristic vectors to be detected. And using adaptive fuzzyC-means clustering, the optimal clustering number can be gotten then to recognize different fault types. Moreover, five parameters, including variance, RMS, kurtosis, skewness, and crest factor, of the nine are selected as the new eigenvector matrix to be clustered for more optimal clustering performance. The test results demonstrate that the proposed approach has a sensitive reflection towards fault identifications, including slight fault.
Funder
National Science and Technology Major Project of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献