Design of Active Disturbance Rejection Controller for Dynamic Positioning Based on Improved Particle Swarm Optimization

Author:

Hu Jia1ORCID,Chen Wentao1

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

Intelligent control methods play an important role in the dynamic positioning system (DPS). To improve the control accuracy of dynamic positioning systems, an improved active disturbance rejection controller (IADRC) is designed in this study, which can optimize the steady-state performance of the system and improve the tracking accuracy of the system. For nonlinear active disturbance rejection controllers, their internal parameters are complex and numerous, with difficult settings. Proper parameters cannot be found with the trial and error method, and traditional optimization algorithms showcase some problems, such as slow convergence speed, leading to frequent failures in local optimal solutions. An optimized particle swarm optimization (IPSO) algorithm is applied to the IADRC parameter setting to boost the global search ability and the local development function. Simulation analyses demonstrate that, compared with other intelligent control methods, the IPSO-based IADRC dynamic positioning system has advantages such as fast response speed and strong anti-interference ability.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning of a State Feedback Controller Using MOPSO;2023 XXV Robotics Mexican Congress (COMRob);2023-11-15

2. Active Disturbance Rejection Control: Tuning by PSO Considering Stability Conditions;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. Optimal Tuning of an Active Disturbance Rejection Controller Using a Particle Swarm Optimization Algorithm;Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3