Optimal Trajectory Planning of Grinding Robot Based on Improved Whale Optimization Algorithm

Author:

Wang Ting1ORCID,Xin Zhijie1,Miao Hongbin1,Zhang Huang1,Chen Zhenya1,Du Yunfei1

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

Abstract

Robot will be used in the grinding industry widely to liberate human beings from harsh environments. In the grinding process, optimal trajectory planning will not only improve the processing quality but also improve the machining efficiency. The aims of this study are to propose a new algorithm and verify its efficiency in achieving the optimal trajectory planning of the grinding robot. An objective function has been defined terms of both time and jerk. Improved whale optimization algorithm (IWOA) is proposed based on whale optimization algorithm (WOA) and differential evolution algorithm (DE). Mutation operation and selection operation of DE are imitated in the part of initialization to process the population initialized by WOA, and then, the search tasks of WOA are performed. Motion with a constant velocity of the end-effector is considered during fine grinding. The continuity of acceleration and velocity will be achieved by minimizing jerk, and at the same time, smooth robot movement can be obtained. Cubic spline interpolation is implemented. A six-axis industrial robot is used for this research. Results show that optimal trajectory planning based on IWOA is more efficient than others. This method presented in this paper may have some indirect significance in robot business.

Funder

Central Government Guided Local Science and Technology Development Projects of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3