Effects of Ankle Joint Motion on Pelvis-Hip Biomechanics and Muscle Activity Patterns of Healthy Individuals in Knee Immobilization Gait

Author:

Guan Xinyu1,Kuai Shengzheng234ORCID,Song Liang5,Liu Weifeng1,Liu Yali6ORCID,Ji Linhong1ORCID,Wang Rencheng1

Affiliation:

1. Division of Intelligent and Bio-Mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, China

2. Shenzhen Second People’s Hospital, Shenzhen, China

3. First Affiliated Hospital of Shenzhen University, Shenzhen, China

4. Shenzhen University School of Medicine, Shenzhen, China

5. Key Laboratory of Technical Aids Analysis, Identification Key Laboratory of the Ministry of Civil Affairs, Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China

6. Department of Mechanical and Electrical Engineering, Beijing Institute of Technology, Beijing, China

Abstract

The purpose of the study was to investigate the pelvis-hip biomechanics and trunk and lower limb muscle activity patterns between healthy people walking in two gaits and evaluate the effects of ankle joint motion on these two gaits. The two gaits included walking with combined knee and ankle immobilization and with individual knee immobilization. Ten healthy participants were recruited and asked to walk along a 10 m walk away at their comfortable speeds in the two gaits. Kinematic data, ground reaction force, and electromyography waveforms of trunk and lower limb muscles on the right side were collected synchronously. Compared to individual knee immobilization gait, people walking in the combined knee and ankle immobilization gait increased the range and average angle of the anterior pelvic tilt during the first double support and the single support phase, respectively. The combined knee and ankle immobilization gait also increased the range of hip abduction during the second double support phase. These kinematic alternations caused changes in trunk and lower limb muscle activity patterns. The ankle immobilization increased the range of gluteus maximus activation in the first double support phase, the range of rectus abdominis activation, the average amplitude of rectus femoris activation in the single support phase, and the range of rectus femoris activation in swing phase and decreased the range of and tibialis anterior activation in the first double support phase. The ankle immobilization also increased the average values of proximodistal component in AKI gait during the single support phase. This study revealed significant differences in pelvis-hip biomechanics and trunk and lower limb muscle activity patterns between the two gaits.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3