A Conceptual Framework for Equipment Maintenance Automation under a Pyroprocessing Automation Framework

Author:

Han Jonghui1ORCID,Ryu Dongseok1,Kim Doyeon1,Lee Jongkwang1,Yu Seungnam1ORCID,Shin Moonsoo2

Affiliation:

1. Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea

2. Hanbat National University, Daejeon 34158, Republic of Korea

Abstract

For most of the remote maintenance activities of equipment in a hot cell, replacing breakdown modules is preferred over in situ repair because of insufficient space in the cell and the limited operability of remote handling tools. In such cases, the maintenance operation can be decomposed into transport of the new modules to the failed equipment, replacement of the broken modules with new ones, and then transport of the broken parts to the reserved space for further repair or disposal. In this respect, transfer is the most basic operation during remote maintenance, which is also true for the maintenance of pyroprocessing equipment. Hence, this paper proposes a maintenance automation framework for automated pyroprocessing equipment from the standpoint of module transfer. For the maintenance automation framework, maintenance-related functions and events are defined, and they are integrated with the pyroprocess automation framework. The proposed framework is verified by a case study on the maintenance of a large module through a hardware-in-the-loop simulation.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3