Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation

Author:

Zhou Chengwei1ORCID,Zhao Xiaodong1ORCID,Zhao Lili2ORCID,Liu Jiayuan1ORCID,Chen Zixuan1ORCID,Fang Shuai1ORCID

Affiliation:

1. Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China

2. Prevention and Health Section, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China

Abstract

To study the effect of computerized tomography (CT) images based on deep learning algorithms on the diagnosis of pulmonary nodules and the effect of radiofrequency ablation (RFA), the U-shaped fully convolutional neural network (FCNN) (U-Net) was enhanced. The convolutional neural network (CNN) algorithm was compared with the U-Net algorithm, and segmentation performances were analyzed. Then, it was applied to the CT image diagnosis of 110 lung cancer patients admitted to hospital. The patients in the observation group (55 cases) were diagnosed based on the improved U-Net algorithm, while those in the control group (55 cases) were diagnosed by traditional methods and then treated with RFA. The Dice coefficient (0.8753) and intersection over union (IOU) (0.8788) obtained by the proposed algorithm were remarkably higher than the Dice coefficient (0.7212) and IOU (0.7231) obtained by the CNN algorithm, and the differences were considerable ( P < 0.05 ). The boundary of the pulmonary nodule can be segmented more accurately by the proposed algorithm, which had the segmentation result closest to the gold standard among the three algorithms. The diagnostic accuracy of the pulmonary nodule in the observation group (95.3%) was superior to that of the control group (90.7%). The long diameter, volume, and maximum area of the pulmonary nodule of the observation group were significantly higher than those of the control group, with substantial differences ( P < 0.05 ). Patients were reexamined after one, three, and six months of treatment, and 71 patients (64.55%) had complete remission, 32 patients (29.10%) had partial remission, 6 patients (5.45%) had stable disease, and 1 patient (0.90%) had disease progression. The remission rate (complete remission + partial remission) was 93.65%. The improved U-NET algorithm had good image segmentation performance and ideal segmentation effect. It can clearly display the shape of pulmonary nodules, locate the lesions, and accurately evaluate the therapeutic effect of RFA, which had clinical application value.

Funder

Zhejiang Medical and Health Science and Technology Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3