Abnormal Detection of Wind Turbine Based on SCADA Data Mining

Author:

Tao Liang1ORCID,Siqi Qian1,Zhang Yingjuan1,Shi Huan1

Affiliation:

1. Hebei University of Technology, College of Artificial Intelligence and Data Science, Tianjin, China

Abstract

In order to reduce the curse of dimensionality of massive data from SCADA (Supervisory Control and Data Acquisition) system and remove data redundancy, the grey correlation algorithm is used to extract the eigenvectors of monitoring data. The eigenvectors are used as input vectors and the monitoring variables related to the unit state as output vectors. The genetic algorithm and cross validation method are used to optimize the parameters of the support vector regression (SVR) model. A high precision prediction is carried out, and a reasonable threshold is set up to alarm the fault. The condition monitoring of the wind turbine is realized. The effectiveness of the method is verified by using the actual fault data of a wind farm.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3