Optimal Location of Biogas Plants in Supply Chains under Carbon Effects: Insight from a Case Study on Animal Manure in North Dakota

Author:

Park Yong Shin1ORCID,Szmerekovsky Joseph2ORCID,Dybing Alan2

Affiliation:

1. Department of Management, Bill Munday School of Business, St. Edward’s University, Austin, TX 78704, USA

2. Department of Transportation, Logistics, and Finance, College of Business, North Dakota State University, Fargo, ND 58108, USA

Abstract

Faced with increasing concerns over the negative environmental impact due to human and industrial activities, biomass industry practitioners and policy makers have great interest in green supply chains to reduce carbon emissions from supply chain activities. There are many studies which model the biomass supply chain and its environmental impact. However, animal waste sourced biogas supply chain has not received much attention in the literature. Biogas from animal manure not only provides energy efficiency, but also minimizes carbon emissions compared to existing biomass products. Therefore, this study proposes a mixed integer linear program that minimizes total supply costs and carbon emissions from an animal waste sourced biogas supply chain while it also incorporates carbon price in the model to see the impact of a carbon policy on tactical and strategic supply chain decisions. To validate the model proposed, a case study of North Dakota is adopted where there is a high potential for a biogas plant to be developed. The results of our optimization experiment indicate that supply chain performance in terms of both costs and emissions is very sensitive to a carbon pricing mechanism.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3