Model-Based Quantification of Left Ventricular Diastolic Function in Critically Ill Patients with Atrial Fibrillation from Routine Data: A Feasibility Study

Author:

Kiefer Nicholas12,Oremek Maximilian J.3ORCID,Hoeft Andreas1ORCID,Zenker Sven13ORCID

Affiliation:

1. Department of Anesthesiology & Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany

2. Department of Anesthesiology, Intensive Care Medicine and Pain Treatment, Hospital Dortmund, Dortmund, Germany

3. Applied Mathematical Physiology (AMP) Lab, Department of Anesthesiology & Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany

Abstract

Introduction. Left ventricular diastolic dysfunction (LVDD) and atrial fibrillation (AF) are connected by pathophysiology and prevalence. LVDD remains underdiagnosed in critically ill patients despite potentially significant therapeutic implications since direct measurement cannot be performed in routine care at the bedside, and echocardiographic assessment of LVDD in AF is impaired. We propose a novel approach that allows us to infer the diastolic stiffness, β, a key quantitative parameter of diastolic function, from standard monitoring data by solving the nonlinear, ill-posed inverse problem of parameter estimation for a previously described mechanistic, physiological model of diastolic filling. The beat-to-beat variability in AF offers an advantageous setting for this. Methods. By employing a global optimization algorithm, β is inferred from a simple six parameter and an expanded seven parameter model of left ventricular filling. Optimization of all parameters was limited to the interval ]0, 400[ and initialized randomly on large intervals encompassing the support of the likelihood function. Routine ECG and arterial pressure recordings of 17 AF and 3 sinus rhythm (SR) patients from the PhysioNet MGH/MF Database were used as inputs. Results. Estimation was successful in 15 of 17 AF patients, while in the 3 SR patients, no reliable estimation was possible. For both models, the inferred β (0.065 ± 0.044 ml−1 vs. 0.038 ± 0.033 ml−1 (p=0.02) simple vs. expanded) was compatible with the previously described (patho) physiological range. Aortic compliance, α, inferred from the expanded model (1.46 ± 1.50 ml/mmHg) also compared well with literature values. Conclusion. The proposed approach successfully inferred β within the physiological range. This is the first report of an approach quantifying LVDF from routine monitoring data in critically ill AF patients. Provided future successful external validation, this approach may offer a tool for minimally invasive online monitoring of this crucial parameter.

Funder

RWTH Aachen University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3