Vibration Control by Means of Piezoelectric Actuators Shunted withLRImpedances: Performance and Robustness Analysis

Author:

Berardengo M.1,Cigada A.1,Manzoni S.1,Vanali M.2

Affiliation:

1. Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy

2. Department of Industrial Engineering, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy

Abstract

This paper deals with passive monomodal vibration control by shunting piezoelectric actuators to electric impedances constituting the series of a resistance and an inductance. Although this kind of vibration attenuation strategy has long been employed, there are still unsolved problems; particularly, this kind of control does suffer from issues relative to robustness because the features of the electric impedance cannot be adapted to changes of the system. This work investigates different algorithms that can be employed to optimise the values of the electric components of the shunt impedance. Some of these algorithms derive from the theory of the tuned mass dampers. First a performance analysis is provided, comparing the attenuation achievable with these algorithms. Then, an analysis and comparison of the same algorithms in terms of robustness are carried out. The approach adopted herein allows identifying the algorithm capable of providing the highest degree of robustness and explains the solutions that can be employed to resolve some of the issues concerning the practical implementation of this control technique. The analytical and numerical results presented in the paper have been validated experimentally by means of a proper test setup.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3