Exact Augmented Perpetual Manifolds: Corollary about Different Mechanical Systems with Exactly the Same Motions

Author:

Georgiades Fotios1ORCID

Affiliation:

1. Center for Nonlinear Systems, Chennai Institute of Technology, Chennai, India

Abstract

Perpetual points have been defined in mathematics recently, and they arise by setting accelerations and jerks equal to zero for nonzero velocities. The significance of perpetual points for the dynamics of mechanical systems is ongoing research. In the linear natural, unforced mechanical systems, the perpetual points form the perpetual manifolds and are associated with rigid body motions. Extending the definition of perpetual manifolds, by considering equal accelerations, in a forced mechanical system, but not necessarily zero, the solutions define the augmented perpetual manifolds. If the displacements are equal and the velocities are equal, the state space defines the exact augmented perpetual manifolds obtained under the conditions of a theorem, and a characteristic differential equation defines the solution. As a continuation of the theorem herein, a corollary proved that different mechanical systems, in the exact augmented perpetual manifolds, have the same general solution, and, in case of the same initial conditions, they have the same motion. The characteristic differential equation leads to a solution defining the augmented perpetual submanifolds and the solution of several types of characteristic differential equations derived. The theory in a few mechanical systems with numerical simulations is verified, and they are in perfect agreement. The theory developed herein is supplementing the already-developed theory of augmented perpetual manifolds, which is of high significance in mathematics, mechanics, and mechanical engineering. In mathematics, the framework for specific solutions of many degrees of freedom nonautonomous systems is defined. In mechanics/physics, the wave-particle motions are of significance. In mechanical engineering, some mechanical system’s rigid body motions without any oscillations are the ultimate ones.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3