An Improved Grey Wolf Optimization Strategy Enhanced SVM and Its Application in Predicting the Second Major

Author:

Wei Yan1,Ni Ni2,Liu Dayou34,Chen Huiling5ORCID,Wang Mingjing5,Li Qiang5,Cui Xiaojun1,Ye Haipeng1

Affiliation:

1. Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang 325006, China

2. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China

3. College of Computer Science and Technology, Jilin University, Changchun 130012, China

4. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

5. College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

In order to develop a new and effective prediction system, the full potential of support vector machine (SVM) was explored by using an improved grey wolf optimization (GWO) strategy in this study. An improved GWO, IGWO, was first proposed to identify the most discriminative features for major prediction. In the proposed approach, particle swarm optimization (PSO) was firstly adopted to generate the diversified initial positions, and then GWO was used to update the current positions of population in the discrete searching space, thus getting the optimal feature subset for the better classification purpose based on SVM. The resultant methodology, IGWO-SVM, is rigorously examined based on the real-life data which includes a series of factors that influence the students’ final decision to choose the specific major. To validate the proposed method, other metaheuristic based SVM methods including GWO based SVM, genetic algorithm based SVM, and particle swarm optimization-based SVM were used for comparison in terms of classification accuracy, AUC (the area under the receiver operating characteristic (ROC) curve), sensitivity, and specificity. The experimental results demonstrate that the proposed approach can be regarded as a promising success with the excellent classification accuracy, AUC, sensitivity, and specificity of 87.36%, 0.8735, 85.37%, and 89.33%, respectively. Promisingly, the proposed methodology might serve as a new candidate of powerful tools for second major selection.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3